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Abstract

The usual analysis of 15N relaxation data of proteins is straightforward as long as the assumption can be made that the backbone
of most residues only undergoes fast (ps), small amplitude internal motions. If this assumption cannot be made, as for example
for proteins which undergo domain motions or for unfolded or partially folded proteins, one needs a method to establish for each
residue whether it undergoes fast (ps) or slow (ns) internal motion. Even then it is impossible to determine the correct overall
tumbling time, τ0

m, via the usual method from the ratio of the longitudinal and transverse relaxation times, if the majority
of residues do not undergo fast, small amplitude internal motions. The latter problem is solved when τ0

m can be determined
independent of the time scale, τi , or the amplitude, S2, of the internal motion. We propose a new protocol, called PINATA,
for analyzing 15N relaxation data acquired at minimally two field strengths, where no a priori assumption about time scales
or amplitude of internal motions needs to be made, and overall tumbling can either be isotropic or anisotropic. The protocol
involves four steps. First, for each residue, it is detected whether it undergoes ps- or ns-internal motion, via the combination
of the ratio of the longitudinal relaxation time at two fields and the hetero-nuclear NOE. Second, for each residue τ0

m and the
exchange broadening, Rex, are iteratively determined. The accuracy of the determination of τ0

m is ca. ± 0.5 ns and of Rex ca ±
0.7 s−1, when the relaxation data are of good quality and τ0

m > 5 ns, S2 > 0.3, and τi <≈ 3 ns. Third, given τ0
m and Rex, step

1 is repeated to iteratively improve on the internal motion and obtain better estimates of the internal parameter values. Fourth,
final time scales and amplitudes for internal motions are determined via grid search based fitting and χ2-analysis. The protocol
was successfully tested on synthetic and experimental data sets. The synthetic dataset mimics internal motions on either fast or
slow time scales, or a combination of both, of either small- or large amplitude, superimposed onto anisotropic overall motion.
The procedures are incorporated into MATLAB scripts, which are available on request.

Abbreviations: τ0
m – rotation correlation time; τ

ap
m – apparent rotation correlation time; T1 – longitudinal relaxation time; T2

– transverse relaxation time; R1 – longitudinal relaxation rate; R2 – transverse relaxation rate; NOE – Nuclear Overhauser
Enhancement. T X

1 , T X
2 , and NOEX are T1, T2, and NOE at a field of X MHz 1H frequency, and similarly for any other relevant

terms, e.g. R1, R2, Rex, τ
ap
m , etc. When for any of these terms the field is not specified the higher field is meant, e.g., NOE

means NOEhf and τ
ap
m means τ

ap_hf
m ; where hf is the higher field; lf is the lower field. RT2 is defined as Rhf

2 / Rlf
2 . RT1 is

Rlf
1 / Rhf

1 . Rτmapp is τ
ap_hf
m / τ

ap_lf
m . Rex, broadening due to conformational exchange. Rτmappn – Rτmapp corrected for ps-im.

RT1n – RT1 corrected for ps-im internal motion and normalized by its rigid limit value RT10. The term ns-im is broadly defined
as internal motion with τi larger than 200 ps, while ps-im is defined as internal motion with τi is smaller than 200 ps; τi time
scale for internal motion; S2 – squared order parameter.

Introduction

The study of backbone dynamics via the relaxation
of 15N nuclear spins is now a standard component of
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the structural characterization of proteins by means of
NMR (Ishima and Torchia, 2000; Kay, 1998; Korzh-
nev et al., 2001). Although many modifications both
for the measurement as well as for the analysis of
15N relaxation data have been described (Farrow et al.,
1994; Lee and Wand, 1999; Mandel et al., 1995;
Tjandra et al., 1995, 1996; Jin et al., 1998; Humphrey
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et al., 1996) the main line, originally described by
Kay et al. (1998) and later extended by Clore and
co-workers (Clore et al., 1990a,b), essentially remains
the same. After measurement of the experimental lon-
gitudinal (T1) and transverse (T2) relaxation times as
well as the heteronuclear NOE at one, two or more
fields, the relaxation data is interpreted in terms of
the Lipari–Szabo (LS) model-free (Lipari and Sz-
abo, 1982), or extended Lipari–Szabo (extended-LS)
model-free (Clore et al., 1990b) approach in two steps
(Farrow et al., 1994; Mandel et al., 1995; Tjandra
et al., 1996).

In the first step the overall tumbling time (τ0
m) is

estimated, since a correct estimate of τ0
m is a primary

requirement for the further analysis (Mandel et al.,
1995; Tjandra et al., 1996; Korzhnev et al., 1997;
Lee and Wand, 1999). Usually, τ0

m is estimated from
the apparent overall tumbling time (τap

m ) which, for
each residue, is calculated from the ratio of their T1
and T2 relaxation times (Farrow et al., 1994; Kay
et al., 1989). For τ

ap
m to correctly estimate τ0

m, the
internal motion (τi ) should be in the extreme narrow-
ing limit, (ωτi)

2 � 1, and of a small amplitude. To
select these residues two filters are usually employed
(Tjandra et al., 1996; Lefevre et al., 1996). The first
filter selects residues with a high NOE value (NOE >

0.6), and second filter selects those residues that have
T1 and/or T2 values close to the average T1 and T2. The
remaining residues are then taken to have no exchange
(Rex = 0) and to be affected only by fast ps-time scale
motion of a limited degree. For these residues a τ0

m

can then reliably be calculated from the ration of T1
and T2. The remaining residues are assumed to have a
τ0
m, which is equal to the average τ0

m.
The second step uses the τ0

m (average and/or
residue-specific) determined in the first step. Given
τ0
m, a LS description or extended-LS description of

internal motion is derived. This step (Mandel et al.,
1995) consists of mathematical optimization via the
χ2 minimization of the model-free parameters against
the relaxation data, and selection of a motional model
based on statistics. These two steps finally result in
numbers for τ0

m, the squared order parameters (S2)

and the time scales of internal motion (τi ). A graph-
ical procedure to extract the model-free parameters has
also been suggested (Jin et al., 1998).

The analysis mentioned above is straightforward
under the assumption that the backbone of most
residues only undergoes fast (ps), small amplitude
internal motions (Baber et al., 2001). However, if
this assumption is incorrect or cannot be made, for

example for proteins that undergo domain motions
(Lefevre et al., 1996; Baber et al., 2001; Zdunek
et al., 2003; Larsson et al., 2003) or for unfolded or
partially folded proteins (Wright and Dyson, 1999;
Dyson and Wright, 1998; Farrow et al., 1997), the
analysis can fail. This is essentially for two reasons.
First, the NOE filter cannot unequivocally establish ti ,
because high NOE values (> 0.6) arise for residues
with fast, ps-internal motion, as well as from residues
with slow, ns-internal motion (Korzhnev et al., 2001).
Since the second filter is based on deviations from the
mean T1 and T2, this filter cannot remove residues af-
fected by ns-internal motion, when a large number of
residues are affected. Thus, residues may be selected
with internal motion outside the extreme narrowing
limit. Second, a correct estimate of τ0

m can only be
made for residues with fast ps internal motion. Out-
side the extreme narrowing limit τ

ap
m underestimates

τ0
m. A wrong estimate of τ0

m (either on average or on
a residue-specific basis) leads to wrong LS parameters
and can even lead to a physically incorrect model for
internal motion (Korzhnev et al., 1997).

Thus, to reliably analyze the 15N relaxation data
of proteins whose residues undergo ns-time scale in-
ternal motion two main problems need to be solved.
First, a procedure that reliably detects the presence or
absence of ns-time scale motion is needed. Second, τ0

m

needs to be determined independent of the time scale
of internal motion. In this paper we propose a practical
alternative method for analyzing 15N relaxation where
no assumptions need to be made about time scales
or amplitudes of internal motions. It requires that the
relaxation parameters are measured at least at two or
more magnetic fields. The protocol is based on the
notion that whatever the time scale of internal motion,
model selection, i.e., determination of its parameters
can essentially be separated from the determination
of τ0

m, by focusing on the field dependence of the
relaxation data. In addition, the motional model is eas-
ily assessed by inspection of simple two-dimensional
graphs. The protocol consists of four iterative steps.
It has been successfully tested on synthetic data that
mimic ps or ns internal motion or a combination of
both time scales, either with large or small motional
amplitudes, superimposed on anisotropic overall mo-
tion. It is also demonstrated on published experimental
relaxation data. The protocol, called PINATA, is im-
plemented in MATLAB scripts, which are available
on request. Although multiple-field NMR relaxation
studies has been carried out before, they have mainly
been focused on 15N chemical shift anisotropy (Fush-
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man et al., 1999; Canet et al., 2001), or spectral
density mapping (Peng and Wagner, 1995; Papavoine
et al., 1997; Vis et al., 1998), or assessing potential
bias in the determination of τm of proteins (Lee and
Wand, 1999). We have focused on the field depend-
ence of the separate relaxation parameters, T1, T2, and
the hetero nuclear NOE, which allows us to separate
different timescales of motions for a 15N nuclei in a
protein backbone.

Theory

The equations for 15N relaxation and its interpretation
in terms of the Lipari–Szabo formalism (Lipari and
Szabo, 1982) have been discussed extensively in the
literature (Abragam, 1961; Lipari and Szabo, 1982;
Farrow et al., 1994; Tjandra et al., 1996; Jin et al.,
1998; Lefevre et al., 1996; Korzhnev et al., 1997).
Here, we summarize those aspects most important for
our protocol.

The longitudinal relaxation time (T1), the trans-
verse relaxation time (T2), and the hetero nuclear NOE
are given by (Abragam, 1961):

R1 = 1/T1 = (3d + c)J (ωN)

+ d(J (ωH − ωN) + 6J (ωH + ωN)), (1)

R2 = 1/T2

= 1
6 (3d + c)(4J (0) + 3J (ωN))

+ 1
2d(J (ωH − ωN) + 6J (ωH + ωN)

+ 6J (ωH)) + Rex, (2)

NOE = 1 + γH

γN
d(−J (ωH − ωN)

+ 6J (ωH + ωN))∗T1. (3)

Here,

d =
(

γNγHh

r3
HN2π

)2 (µ0

4π

)2

and

c = 2

15
ω2

N�σ2,

γN and γH are the 15N and 1H gyromagnetic ratio’s,
ωN and ωH are the corresponding angular resonance
frequencies, h is Planck’s constant, rHN is the inter-
nuclear H-N distance assumed to be 1.02 Å, µ0 is the

permeability of free space, and �σ is the 15N chemical
shift anisotropy commonly assumed to be −170 ppm.
The term Rex describes the additional broadening
due to conformational exchange in the µs/ms-time
range. The spectral density function J(ω) is defined
as the Fourier transform of the total rotational auto-
correlation function C(t). We have observed that the
simplified equations used in reduced spectral density
mapping (Farrow et al., 1995; Lefevre et al., 1996;
Ishima et al., 1995; Ishima and Nagayama, 1995a,b)
are quite accurate and might as well have been used.

In general, any auto-correlation C(t) can be ap-
proximated by a sum of exponentially decaying terms
(see e.g., Lipari and Szabo, 1982; Viles et al., 2001).
Although mathematically correct, such an approach
may obscure a physically meaningful interpretation
of the derived parameters if the number of exponen-
tially decaying terms becomes too large. Lipari and
Szabo (1982) have shown that the total rotational auto-
correlation function C(t) can be approximated as a
simple sum of few exponential terms and that the
parameters can be interpreted in a physically mean-
ingful manner without invoking a specific motional
model for the internal motion. They also established
the conditions under which this ‘model-free’ approach
is exact or approximate. The first assumption they
make is that any C(t) can be written as a product
of a correlation function for overall tumbling C0(t)

and one for internal motion CI (t) (Lipari and Szabo,
1982):

C(t) = C0(t)CI (t). (4)

This factorization was shown to be rigorously cor-
rect if the internal motions and overall tumbling are
not correlated, and the overall tumbling is isotropic.
Equation 4 is not rigorously correct in case of aniso-
tropic overall tumbling, even when internal and overall
motions are uncoupled. However, it is a good approx-
imation when the overall motion is axially symmetric
and the internal motion is sufficiently fast (Lipari and
Szabo, 1982; Baber et al., 2001; Schurr et al., 1994).
In the original Lipari–Szabo formalism, CI (t) is ap-
proximated by the contribution on one time scale only.
The corresponding spectral density function is then
exact when all the internal motions are in the extreme
narrowing limit. When internal motions occur on both
fast (extreme narrowing limit) and slower time scales
there is no general rigorous and exact description of
CI (t). The simplest description is then the extended
form of Lipari–Szabo formalism (extended LS) (Clore
et al., 1990b), where CI (t) is approximated by the
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sum of two exponential terms, describing the fast and
slow time scales, respectively. This extension was ori-
ginally proposed to describe backbone residues that
undergo fast vibrational motions as well as slower mo-
tions due to dihedral angle transitions. The assumption
that overall and internal motions are decoupled is then
a good approximation (Lipari and Szabo, 1982). How-
ever, when the slow internal motion is the reorientation
of an entire domain, the decoupling assumption is not
rigorous, but difficult to avoid, as pointed out by Baber
et al. (2001). Meirovitch and coworkers (Tugarinov
et al., 2001) have developed a theory (SRLS) for
isotropically tumbling molecules in where internal
motion and overall tumbling are fully coupled. The
SRLS theory still converges to the Lipari–Szabo form-
alism in the fast motional limit and of course in the
rigid limit. Numerical simulations show that a Lipari–
Szabo analysis (assuming decoupling), while coupling
is present as described via SRLS, overestimates the
squared-order parameter when the internal motion is
on ns-time scale.

In PINATA the commonly used (extended) Lipari–
Szabo approach to internal motion (Equation 4) has
been implemented which is correct with the caveats
discussed above. Internal motion on both fast and slow
time scales and (axially symmetric) anisotropic over-
all motion can then be treated by describing C(t) via
Equation 4 and by taking for CI (t) the extended LS
and for C0(t) the equations for (axially symmetric)
anisotropic overall tumbling (Woessner, 1962). For
anisotropic overall tumbling this yields an overall cor-
relation function that is dependent on the orientation
of the N-H bond vector with respect to the rotational
diffusion tensor (Woessner, 1962). This treatment
yields (for axially symmetric anisotropic tumbling) the
following spectral density function for a 15N amide
nitrogen (Lipari and Szabo, 1982; Schurr et al., 1994;
Tjandra et al., 1995; Baber et al., 2001; Korzhnev
et al., 2001):

J (ω) = S2
f S2

s A1J1(ω, τ0
m1)

+ (1 − S2
f )A1J1(ω, τ1ef )

+ S2
f (1 − S2

s )A1J1(ω, τ1es)

+ S2
f S2

s A2J2(ω, τ0
m2)

+ (1 − S2
f )A2J2(ω, τ2ef )

+ S2
f (1 − S2

s )A2J2(ω, τ2es)

+ S2
f S2

s A3J3(ω, τ0
m3)

+ (1 − S2
f )A3J3(ω, τ3ef )

+ S2
f (1 − S2

s )A3J3(ω, τ3es). (5)

Here, Ax is defined as

A1 = 0.25(3 cos2 � − 1)2;
A2 = 3 cos2 � sin2 �;
A3 = 0.75 sin4 � (6)

and Jx(w, tx) as,

Jx(ω, τx) = 2

5

τx

1 + (ωτx)2 . (7)

The time constants for overall tumbling τ0
mx are

defined as, τ0
m1 = τ0

l , τ0
m2 = 6τ0

l τ
0
s /(5τ0

s + τ0
l ), and

τ0
m3 = 3τ0

l τ
0
s /(τ

0
s + 2τ0

l ). Here, τ0
l and τ0

s are the tum-
bling times of the long and short axis of the diffusion
tensor and the ratio τ0

l /τ
0
s = D⊥/D‖ defines the an-

isotropy of the overall tumbling. The orientation of the
relaxation vector with respect to the long axis (z-axis)
of the diffusion tensor is given by the angle �. We
note in passing that non-axially symmetric anisotropic
overall tumbling (diffusion tensor with three different
components) adds two more terms to the description of
the overall tumbling (five terms, A1–A5). The spectral
density then not only depends on the angle � but also
on the angle the N-H vector makes with the x-axis of
the diffusion tensor. The time constants for the two
internal motion contributions, τxef and τxes , are given
by τ−1

xef = (τ0
mx)−1 + τ−1

if and τ−1
xes = (τ0

mx)
−1 + τ−1

is ,
respectively, with τif and τis the time constants for
fast and slow internal motion. S2

f and S2
s are the order

parameters of the two contributions with S2 = S2
f S2

s .
Simpler motional models, such as for isotropic motion
and/or for only one internal motion are simplifications
of Equation 5. Higher-order approximations of the
internal correlation function than the extended-LS de-
scription (three contributions or more) have not been
invoked (see Section I of the Results and discussion).
From the definition of τxef and τxes it follows that
internal motions much slower than τ0

mx do not affect
J (ω). This reflects the physical notion that if there is
an independent overall motion common to all parts of
the molecule, there cannot be a component in the spec-
tral density that decays more slowly than the overall
motion.

The apparent overall rotation correlation time is
calculated from the ratio R2 over R1 and can be
expressed as:

τ
ap
m = 1

ωN

√
3

2(1 + a)

(
R2

R1
− 7

6
(1 + a)

)
(8)
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with a = −0.02. This equation is similar to the one
employed by Farrow et al. (1995). In the absence of
internal motion or when the time constants for internal
motion are zero (τis/f = 0), Equation 8 correctly es-
timates τ0

m within 1%. Thus, in the absence of internal
motion and for small degrees of anisotropy, τap

m is very
close to the true correlation time, τ0

m, and from Equa-
tions 5 and 8 it follows that τ

ap
m = τ0

m can be expressed
as:

τ0
m = τ0

l

1 + �

2
sin2(�)

, (9)

where � = (τ0
l /τ

0
s ) − 1. Hence, for small degrees of

anisotropy, τap
m contains structure information, namely

on the angle � each relaxation vector (N-H vector)
makes with the long axis of the diffusion tensor. Thus,
in the case of anisotropic tumbling, τ0

m represents a
residue-specific effective overall tumbling time that
carries information about the relative orientations. The
orientation of the N-H vectors give long-range struc-
tural information that can be used to orient individual
domains of proteins (Zdunek et al., 2003). When
the overall tumbling is isotropic, all residues have
same overall tumbling time τ0

m, and the orientation
information from Equation (9) is lost.

Material and methods

The relaxation data acquired at two or more magnetic
fields have been analyzed using PINATA described
here, which consists of scripts written for Matlab Ver-
sion 5.1. PINATA has been successfully tested on pub-
lished relaxation data on M13 coat protein (gVIIIp)
measured at 500, 600 and 750 MHz (Papavoine et al.,
1997, 1998), as well as on synthetic relaxation data.
The performance and the different steps of the Mat-
lab protocol are described in detail in the Result and
discussion section.

We have used the full equations (1)–(5) to generate
synthetic T1, T2 and NOE data at 600 and 400 MHz 1H
frequency. The data was generated with Matlab. Dif-
ferent settings of τ0

m, τi (τif , τis), S2 (S2
f , S2

s ) and Rex
were used to produce the synthetic data (see Table 1).

Results and discussion

The results are presented and discussed in six sections.
Section I provides a theoretical description of which

motional parameters can be separately derived from
relaxation data at multiple fields. Section II gives a
flowchart of the actual analysis protocol. In Sections
III, IV and V each step in the protocol is discussed in
detail. The numerical tests are found in section IVc.
Section VI describes the demonstration on published
relaxation data.

I. Separation of motional parameters

Given a model for internal and overall motion, the
relaxation data, R1, R2 and NOE can be calculated
exactly from equations 1 to 5 for one or more fields.
The reverse, the derivation of motional parameters
(τ0

m, S2, τi , Rex, etc.) from the relaxation data (R1,
R2 and NOE) is more complex, because it requires a
mathematical fitting procedure. The complex depend-
ence of the motional parameters on the relaxation data
makes this fitting very difficult. We have (re) ana-
lyzed the interdependence of motional parameters and
relaxation data in the context of the extended Lipari–
Szabo model superimposed onto anisotropic overall
motion (Equation (5)) and come to the following three
conclusions with regard to the separation of motional
parameters.

The qualitative information that the internal mo-
tion is purely ps-im (τi < 200 ps) or that ns-im
(τi > 200 ps) is at least mixed in, can graphically
be derived from Rτmapp (or RT1) versus NOE plots,
without the need to precisely specify τ0

m (Sections
IIIa and IIIb). When pure ps-im is present, the con-
dition ωτe � 1 generally also holds true, and the
one-exponential approximation of CI (t) (or rather its
Fourier transform, the spectral density function) is
exact (Lipari and Szabo, 1982), i.e., whatever the com-
plexity of CI (t) the corresponding spectral density
functions cannot be distinguished. A one-contribution
model for internal motion then always suffices, and
τe(= τi when τi � τ0

m) should then be interpreted as
a S2

k -weighted average time constant of the k internal
motions. However, when ns-im is at least mixed in,
CI (t) described by a one- or a two-exponential ap-
proximation (or more terms) leads to different spectral
density functions. Consequently, a correct description
of the internal motion may require more than one time
scale. The discrimination between a one- and two-
exponential contribution model and the determination
of their parameters ({S2

f , τif }, {S2
s , τis}), can then be

based on Rτmapp (or RT1) and NOE, in combination
with the R1 value (Section IIIc).
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Table 1. Parameters used to generate synthetic T1, T2 and 1H-15N hetero-nuclear NOE data

τ0
m (ns) 4.0 6.0 8.0 10.0 12.0 14.0 16.0

τi(f,s) (ps) 20 150 400 700 1000 1700 2000

S2
(f,s)

0.4 0.6 0.8 1.0

Rex (s−1) 0 2 12
15N CSA (ppm) −150 −170 −190 −200

A description of ns-im via a one-contribution
model can be viewed as a first-order approximation;
the derived τi and S2 then represent average of the
actual time scales and squared-order parameters of
the different actual ns-im contributions. A descrip-
tion of ns-im via a two-contribution model is then a
second-order approximation. To derive higher order
approximations requires more and increasingly pre-
cise and accurate relaxation data. In practice it turns
out that a two-contribution model with one ps-im con-
tribution and one ns-im contribution, generally leads
to a good fit to measured relaxation data (Mandel et al.
1995; Jin et al., 1998). Our analysis leads to same
conclusion (e.g., see Section III). We therefore im-
plemented in PINATA only a description of internal
motion with a maximum of two-contributions.

The real overall rotation correlation time, τ0
m, can

be determined for each residue from the combination
of τ

ap
m , Rτmap (or RT1), and NOE without the need

to specify the number of terms in CI (t), and its para-
meters τi and S2. The terms τ

ap
m , Rτmap (or RT1), and

NOE form a more or less isolated parameter subspace
that is used to determine the real residue-specific τ0

m

independent of time scale and amplitude of internal
motion (Sections IVb and IVc). The variation in the
residue-specific τ0

m can be used to determine the shape
of the diffusion tensor of the investigated molecule
(Clore et al., 1998).

The ratio of R2 rates (RT2) is essentially independ-
ent of τi and largely independent of S2 and τ0

m. There-
fore, RT2 can be used to determine the exchange rate,
Rex, if Rex is in the fast exchange regime (Section
IVa). Given Rex and τ0

m, S2 can accurately be de-
termined from the transverse relaxation rate, without
specifying the time constant(s) for internal motion
(Section IVa).

Thus, instead of directly using the measured quant-
ities R1, R2, and NOE at two fields, it is better to
focus on the field dependence of R1 and R2, i.e.
RT2, RT1, and/or Rτmapp. In this way, certain mo-
tional parameters become largely separated. However,

this separation is not strict. Therefore, any analysis
protocol needs to be iterative (Section II).

II. Flowchart of the PINATA protocol

Based on the separation of parameters described
above, the PINATA protocol consists of the following
iterative steps (Figure 1). After reading in the experi-
mental data, setting of some parameters (field strength,
etc.), and plotting of the experimental data (step 0), the
actual protocol starts.

Step 1. The experimental (Rτmapp, RT1 and NOE)
data points are calculated and superimposed onto the
theoretical Rτmapp and/or RT1 vs. NOE graphs using a
rough initial guess of t0m. From these plots it is directly
visible whether a residue undergoes pure ps-im or that
ns-im is at least mixed in. Thus, a qualitative determ-
ination of the internal motional model is obtained. In
addition, rough parameters (S2

f , τif , S2
s , τis) can be

derived.
Step 2. This is the core of the protocol. It en-

tails an iterative determination of τ0
m and Rex for

each residue by using the following experimental data:
([{τ

ap
m , Rτmapp or RT1, NOE}, RT2]; the symbols

‘[’ and ‘{’ indicate the level of interdependence).
Initially, τ

ap
m and Rτmapp are calculated from the ex-

perimental data (from the ratio of R2 over R1) at the
two fields. They are then corrected for ps-im, based on
their respective NOE value, which gives τ

ap−ps
m and

Rτmappn. The Rτmappn is subsequently used to cor-
rect τ

ap−ps
m for ns-im. This gives τ

ap−ps−ns
m . Given

τ
ap−ps−ns
m and a rough estimate for S2 and τi (one-

contribution model), a theoretical exchange free RT2
is calculated (RT2exfree). Rex is determined from com-
parison of RT2exfree and the experimental RT2. This
also gives exchange corrected R2 values, Rexcor

2 . The
Rexcor

2 values are then used to obtain new improved

τ
ap−ps−ns
m values, which in turn are used to obtain im-

proved Rexcor
2 (and Rex) in three iterations. The final

τ
ap−ps−ns
m is a good estimate of τ0

m, because the time
scale of internal motion does not bias it.
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Step 3. Given the estimate of the new τ0
m and

Rexcor
2 step 1 is repeated, i.e., the motional model is

established via Rτmapp and RT1 vs. NOE plots.
Step 4. Via a grid search method the internal mo-

tional parameters (e.g. {S2
f , τif }, {S2

s , τis}) are refined

using τ
ap−ps−ns
m (average or residue-specific). A clas-

sical χ2-statistical analysis is then used to confirm
whether a simple or more complex internal motion
model is warranted. It is also possible to introduce the
results of step 4 as input to step 2 and carry out a final
iteration.

III. Determination of internal motion model (Step 1,
Figure 1)

IIIa. Determination of internal motion model from
Rτmapp versus NOE graphs
Figure 2A shows an overlay of two Rτmapp vs. NOE
graphs. When the internal motion is fast (τi < 200 ps),
the contours with constant S2 are strictly linearly de-
pendent on the NOE and overlap in this regime, i.e.,
the slopes are independent of S2. Moreover, these
slopes are virtually independent of τ0

m (this is evid-
ent from the overlap of the linear part of the drawn
and dotted S2-contours calculated at 12 ns and 9 ns,
respectively). In fact, the latter holds true as long as
τ0
m > 6 ns (data not shown). The linear depend-

ence rather abruptly changes for τi outside the ps-im
regime. In this ns-im regime (τi > 200 ps), the S2-
contours reach their smallest value for τi ≈ 1 ns,
and depend only weakly on τ0

m (compare drawn and
dotted contours). We further note that the τi-contours
in Figures 2A and 2C follow straight (dashed) lines
extending from Rτmapp = 1 and NOE ≈ 0.82. In
conclusion, as evident from the Figures 2A and C,
the S2-contours depend somewhat on τ0

m, while the
τi -lines essentially overlap for different τ0

m values.
It is convenient to correct the Rτmapp values for

their linear dependence on the NOE. In the Rτmappn

vs. NOE graphs, the essentially constant linear slope
in the ps-im regime is corrected (Figure 2C, Table 2).
The S2-contours now run horizontally in the ps-im
regime. Consequently, when Rτmappn = 1, τi is al-
ways faster than 200 ps, irrespective of the value of
the NOE. On the other hand, when Rτmappn < 1, τi is
larger than 200 ps, or when a two-contribution internal
motion model applies, it at least contains a contribu-
tion with τis > 200 ps. Thus, the Rτmappn vs. NOE
can be used to directly establish the motional model.

The spectral density functions are linear com-
binations of spectral density functions representing

overall motion and internal motion with one (Lipari
and Szabo, 1982) or two contributions (Lipari and
Szabo, 1982; Clore et al., 1990b) or more. Rτmapp
and Rτmappn vs. NOE graphs can therefore also be
regarded as linear combinations of different graphs
representing different types of internal motion. For
example, when in addition to the one-contribution in-
ternal motion, an additional ps-im of 20 ps with S2 of
0.8 were present, the complete Rτmappn vs. NOE graph
in Figure 2C would be moved horizontally to the left,
i.e., to the point (S2 = 0.8, τi = 20 ps). Alternatively,
when in addition ns-im were present, of say S2

s = 0.8
and τis ≈ 2 ns, the Rτmappn vs. NOE graph is moved
down from Rτmappn = 1 and NOE ≈ 0.82 along the
τi-contour of 2 ns to the point S2 = 0.8.

As shown in Figure 3B, Rτmapp and thus Rτmappn

are essentially independent of CSA, i.e., for −190 ppm
< CSA < −150 ppm, the Rτmapp variation is smaller
than 0.7%. Because Rτmapp is essentially the product
of RT2 and RT1, the opposing dependence of RT2 and
RT1 on CSA (Figure 3A) is canceled out in Rτmapp.

Exchange broadening (Rex) may complicate the
interpretation of the Rτmappn data because Rex in-
creases Rτmappn whereas ns-im decreases Rτmappn.
The exchange broadening could therefore cancel out
the effects of ns-im in the Rτmappn graph. Rex can,
however, be determined reliably from RT2 (see section
IVa below) and Rτmappn can be corrected for exchange
(Rτmappn

excor). Thus, the Rτmappn
excor graphs can

reliably be used to determine the presence of ns-im.
In conclusion, Rτmapp or Rτmappn vs. NOE graphs

form master curves, as they are essentially independ-
ent of τ0

m and CSA. They can be used to detect the
presence of ns-im independent of the fact whether the
overall tumbling is isotropic or anisotropic, because
Rτmapp or Rτmappn vs. NOE is independent of τ0

m.
When Rτmappn < 1 (depending on error margin, see
below), it is safe to conclude that ns-im is at least
mixed in. The relative error in the experimental Rτmapp
values is half the sum of the relative errors in the T1
and T2 values at the two fields (Rτmapp ≈ const (RT1

× RT2)
1/2). The errors in T1 and T2 can be estimated

to be ca. 1% and 3%, respectively, for good-quality
relaxation data. Thus, the error on Rτmapp lies around
4%. In this way the error on the data points is directly
evident. It is therefore clear which conclusions can be
drawn: When Rτmappn < 0.96, it can safely be con-
cluded that there is ns-im. Note that this conclusion
can be drawn independent of the value of the NOE.
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Figure 1. Flowchart of the analysis protocol PINATA. Section 0: Input of relaxation data, settings of some parameters, and plotting of original
relaxation data. Section 1: Qualitative analysis of internal motion models via RT1 and/or Rτmap vs. NOE graphs using a rough estimate of τ0

m.

Section 2: Residue specific iterative estimation of τ0
m and Rex. First τ

ap
m is calculated using experimental R1 and R2 values at the two fields

(Equation (8)), using a one-contribution model (LS) using the S2 and τi approximations set in section 0. Then Rτmap and τ
ap
m is corrected

for ps internal motion (τap−ps
m ) and ns internal motion (τap−ps−ns

m ). After ps and/or ns correction, the Rex contribution is calculated from
RT2 and the experimental R2 is corrected for Rex (Rexcor

2 ), which is used to calculate new τ
ap
m and the whole section 2 is iteratively repeated

3 times. This finally gives τ
ap−ps−ns
m that can be estimated to be τ0

m. Section 3: Qualitative analysis of internal motion models via RT1 and/or

Rτmap vs. NOE graphs using τ0
m and Rex estimated in Section 2. Section 4: Grid search based on Rexcor−hf

2 , Rhf
1 , RT1 and NOE to obtain all

internal motion parameters (τif , τis , S2
f

and S2
s ) using estimated τ0

m (residue specific or average) from Section 2.



299

Figure 2. Rτmapp (= τ
ap_600
m /τ

ap
m −400) (A) and RT1 (= R400

1 /R600
1 ) (B) vs. the NOE600. The normalized Rτmappn and RT1n are shown

in panel C and D, respectively. The full equations (Equations 1–3 and 5) was used in the calculations, assuming a one internal motion model
with an isotropic overall tumbling, no conformational exchange (Rex = 0) is assumed, and the 15N CSA was set to −170 ppm. The data points
were calculated for τi ranging from 20 ps to 6 ns and with S2 ranging from 1 to 0.40. The solid contour lines connect points with constant S2

(S2-contours) for τ0
m = 12 ns, and the dotted contour lines are S2-contours for τ0

m of 9 ns. The values of 12 ns and 9 ns correspond to the
effective tumbling time τ0

m of residues with the NH vector parallel or perpendicular to the long axis of an anisotropically tumbling molecule
with an axial symmetry and an anisotropy of 1.5 (=τl/τs ). The τi -contours (broken lines) are only shown for τ0

m = 12 ns for τi equal to 300 ps,
500 ps, 1 ns and 2 ns (labels). The RT1n values are normalized by the rigid limit value RT1, RT10 (= RT1 when S2 = 1.0 and τ0

m = 10 ns).

Rτmappn < 0.96 corresponds to a contribution of ca.
8% when τi = 2 ns (Figure 2C).

IIIb. Determination of internal motion model from
RT1 versus NOE graphs

The RT1 vs. NOE graphs (Figure 2B) have a shape
very similar to that of the corresponding Rτmapp vs.

NOE graphs (Figure 2A). Analogous to the Rτmapp
the S2-contours in RT1 depend linearly on the NOE
as long as the internal motion is in the ps-im regime.
Hence, RT1 can, like Rτmapp, be corrected for ps-
im (Table 2). The normalized RT1n vs. NOE graph
(Figure 2D) is again very similar to the Rτmappn vs.
NOE graph (Figure 2C). As for Rτmapp, the RT1n
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Table 2. Coefficients in the equations used for ps- and ns-im correctiona

1 2 3 4 5 6 7 8 9 10

c# 1.17 10 0.14 0.11 c

d 0.5 0.0023 14 3.1 × 10−5 0.0057 1.72 × 10−4 0.001 1.3 0.9

eb 18 6 0.164 c 10 0.003 88 15 0.25 0.15

aThe (recursive) equations used in the corrections are:

τ
ap−ps
m = τ

ap
m +

{
c1 + (τ

ap−ps
m − c2) ∗ c3 + c4 ∗ (c5 − NOEhf )

}
∗ (c5 − NOEhf )

Rτmapn = Rτmap +
[
1 + (1 − S2

s ) ∗ d1

]
∗ (

[
d2 − (τ

ap−ps
m ∗ 109 − d3)2 ∗ d4

]
+{[

d5 − (τ
ap−ps
m ∗ 109 − d3)2 ∗ d6

]
+ d7 ∗

[
d8 − (τ

ap−ps
m ∗ 109 − d3)2 ∗ d9

]
∗ (c5 − NOEhf )

}
∗(c5 − NOEhf ))

τ
ap−ps−ns
m = τ

ap−ps−ns
m +

{[
e1 + (τ

ap−ps−ns
m − e2)2 ∗ e3

]
+ (e4 − NOEhf )2 ∗

[
e5 + (τ

ap−ps−ns
m − e2)3 ∗ e6

]}
∗(1 − Rτmapn) +

[
e7 + (e4 − NOEhf )2 ∗ e8

]
∗ (1 − Rτmapn)2 + e9 ∗ (e4 − NOEhf ) − e10.

RT 1n = {RT 1 + (0.823 − NOEhf ) ∗ 0.2}/RT 10, where RT10 = RT1 (S2 = 1, τi = 0) with estimated τ0
m as

described in Section IIIb.
bThe coefficients c and e are multiplied with 109.
cThe coefficients c5 and e4 are 0.823 and 1.0, respectively.

values have been normalized to the rigid limit value
(S2 = 1.0) with RT10 calculated for τ0

m = 10 ns.
The similarity of the Rτmappn vs. NOE and RT1n
vs. NOE graphs stems from the fact that Rτmapp ≈
const (RT1 × RT2)1/2 and that RT2 is effectively in-
dependent of the time scale of internal motion. Thus,
Rτmapp ≈ const. (RT1)1/2 vs. NOE is nearly co-
incident with Rτmappn vs. NOE. Note however that
the RT1n vs. NOE graph has a lower minimum than
Rτmappn vs. NOE (the minimum Rτmappn is 0.86, Fig-
ure 2C; whereas that of RT1n is 0.74, Figure 2D).
This immediately implies that that RT1n has a higher
sensitivity to ns-im than Rτmappn. Moreover, the error
on the experimental RT1n data points is smaller than
for Rτmappn, because it derives from the relative error
of T1 at the two fields. Given, a 1% error in T1, the
estimated error in RT1n is 2%.

To investigate the dependence on CSA we calcu-
lated RT10 as a function of CSA varying between
−150 to −190 ppm (Figure 3B). At the extreme points
of CSA (−150 and −190 ppm) RT10 still remains
within ± 3% of its value at CSA −170 ppm.

We have also investigated the variation in RT10

with τ0
m (Figure 2D and 3A). At τ0

m = 6 ns, RT10

is ca. 9.5% below its value at 10 ns, while at 14 ns it
is 3.8% above. This error can, however, be effectively
reduced by improving the estimate of τ0

m, which can be
as low as ± 0.5 ns (Section IVc). A rough estimate of

τ0
m, within ± 1 ns, leads to a variation in RT10 of only

± 3.8% at 6 ns and only 0.4% at 14 ns (Figure 3A). In
view these error estimates on RT1n, it is safe to take
RT1n < 0.96 as the detection limit for ns-im.

In conclusion, RT1n can be used to detect the pres-
ence of ns-im, independent of the fact whether the
overall tumbling is isotropic or anisotropic (because
of the weak dependence of RT1n on τ0

m). The absence
of an Rex effect on RT1n, the lower experimental er-
ror on RT1n, together with the higher sensitivity to
the presence of ns-im, therefore makes RT1n a better
parameter for detecting ns-im than Rτmappn.

IIIc. Determination of internal motion model and
qualitative assessment of its parameters, summary

As follows from Sections IIIa and IIIb the internal mo-
tion model and its parameters can be determined from
experimental RT1n (or Rτmappn

excor) and NOE values
independent of the fact whether the overall motion is
isotropic or anisotropic; the following practical rules
apply (see Figures 2 and 3).

• If RT1n > 0.96 (or Rτmappn
excor > 0.96), only ps-im

is present.
• If RT1n < 0.96 (or Rτmappn

excor < 0.96), ns-im is at
least mixed in.

• If NOE > 0.6 and RT1n < 0.96 (or Rτmappn
excor <

0.96), τi > 1.0 ns.
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Figure 3. Dependence of Rτmapp, RT1, and RT2 at S2 = 1.0 on t0m indicated as labeled solid lines (A) and 15N CSA (B). RT1 and RT2, with

S2 = 1.0, are normalized to their values at t0m = 10 ns and CSA = −170 ppm, respectively. In panel A, the relative deviations of Rτmapp (solid)

and the normalized RT1 (dashed-dotted) and RT2 (dotted), when t0m is ± 1 ns away from its actual value are also given. Field strengths of 400
and 600 MHz were used in the calculations. Panels C and D show the dependence of R2 and R1 on ti for different S2 values at 600 MHz;
t0m = 10 ns and CSA = −170 ppm. In the calculation the full equations was used (Equations (1)–(5)). Internal motion is represented by a
one-contribution model with Rex = 0.

• If NOE < 0.0, τi < 1 ns independent of the value of
RT1n (or Rτmappn

excor).
• If RT1n > 0.98 (or Rτmappn

excor > 0.98) and NOE
< 0, τi lies around 0.2 to 0.3 ns.

Note that the conclusion concerning the absence or
presence of ns-im can be drawn from the value of
RT1n (or Rτmappn

excor) independent of the value of

the NOE. The value of the NOE does only affect the
combination of the exact time scale and amplitude of
the internal motion. The motional parameters and the
type of internal motion model can be estimated more
precisely than in the above list based on the combina-
tion of RT1n (or Rτmappn), NOE and the experimental
R1 value as illustrated via the following examples.
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Suppose that RT1n is ca. 0.94 and the NOE is ca.
0.67. As can be seen in Figure 2D, this would corres-
pond to a one contribution model with S2 = 0.75 and
τi = 1.3 ns. The uncertainty in the values of S2 and τi

due to error in RT1n and NOE can directly be estim-
ated from Figure 2D by simply establishing S2 and τi

values from Figure 2D using RT1n ± σ. and NOE ± σ.
For a two contribution model, different combinations
of solutions are possible given RT1n is ca. 0.94 and the
NOE is ca. 0.67, e.g., one with S2

s = 0.8, τis = 1.7 ns
and S2

f = 0.8, τif = 0.02 ns (S2 = S2
f × S2

s = 0.64).
To decide whether the one- or two-contribution model
applies, the information on the R1 value can be used.
R1 is maximal for a one-contribution model, because
an additional contribution of ps-im always reduces R1
(Figure 3D). Here the R1 at 600 MHz for the one-
contribution model with S2 = 0.75 and τi = 1.3 ns
is approximately 1.5 s−1. Thus, if the experimental
R1 value equals 1.5 s−1 within experimental error, the
one-contribution model applies. If R1 is smaller than
1.5 s−1, the internal motion consists of at least two
contributions.

Finally, we note that contributions from additional
time scales in the ns-im regime lead in principle to
different spectral density functions (Section I). How-
ever, the above analysis shows that detection of such
additional contributions beyond the two-contribution
model is going to be difficult, since it constitutes a
higher order approximation. To detect these additional
time scales would require more relaxation data, e.g., at
more fields, and of very high accuracy.

IV. Estimation of Rex and t0m (Step 2, Figure 1)

IVa. Estimation of Rex from RT2
The R2 relaxation rate is roughly independent of τi

when τ0
m > 6 ns (Figure 3C, see also Jin et al. (1998))

and is well approximated by

R2 = 1/T 2 ≈ 4
15 (3d + c)

(
S2τ0

m

+ (1 − S2)τe

)
+ Rex. (10)

Thus, R2 depends mainly on τ0
m, S2(= S2

s × S2
f ), and

Rex. When Rex = 0, R2 is proportional to the product
of S2 and τ0

m. RT2 then becomes:

RT 2 ≈ (3d + c600)/(3d + c400) (11)

and is independent of S2 and τ0
m. RT2 is then solely de-

termined by the ratio of the chemical shift anisotropy
term at the two fields (c600 and c400). The �σ (= CSA)
may vary within −170 ± 20 ppm (Fushman et al.,

1998, 1999). This potential variation in the CSA, ca.
± 12%, leads to a variation of only ± 3.0% in RT2. In
conclusion, RT2 is roughly independent of τ0

m, CSA,
S2 and τi , and only its dependence on Rex remains.
Equation 11 is not exact and thus variations in RT2 due
to τ0

m, CSA, S2 and τi may be larger than expected. We
have therefore calculated RT2 using the full equations,
for different τ0

m values and internal motion parameters
(Figures 4A–D). If Rex = 0, the RT2 values indeed
fall within a relatively narrow range (when τ0

m � 6 ns,
1.07 < RT2 < 1.14). The effect of a potential variation
of the CSA on RT2 is weak (Figure 4B; CSA: ± 12%
leads to RT2: ± 3%). Thus, the conclusion remains
the same; RT2 only weakly depends on τ0

m, internal
motion parameters, and CSA.

Consequently, to predict the exchange free RT2
(RT2exfree) within a few % only rough estimates
(within ca. 20%) of S2 and τ0

m are needed and a dis-
tinction between ps-im and ns-im. The experimental
error in RT2 is ca. 6%, which overwhelms this sys-
tematic error. Thus, Rex can accurately be determined
from the difference between experimental RT2 and
RT2exfree. This does not require prior knowledge of
the complexity and extent of the internal motion and
exact knowledge of τ0

m. The level of accuracy of de-
termining exchange broadening is better than 2 s−1

(Figures 4(A–D).
Finally, it is to be noted that we assume a B0-

squared dependence for Rex, i.e., the broadening is
due to exchange in the fast limit. This is an approach
that is most commonly used (see, e.g., review of
Korhznev et al., 2001). In principle, one may distin-
guish between fast and slow exchange by the number
of resonance lines present in the NMR spectra per
exchanged spin. However, observation of single reson-
ances in NMR spectra does not necessarily mean that
the exchange is fast. This problem has been considered
and recipes proposed on how to estimate the time-
scale of an exchange process based on CPMG data
(see for example Korhznev et al., 2001, and references
therein).

IVb. Estimation of τ0
m independent of the time scale of

internal motion
Figure 5A shows a plot of τ

ap
m vs. NOE. The S2-

contours follow curves quite similar to those of
Rτmappn or RT1n. In the ps-im region τ

ap
m is strictly

linearly dependent on NOE and the slope is only
weakly dependent on τ

ap
m as long as τ0

m > 5 ns. Hence,
a correction of the linear dependence on the NOE can
be made and a ps corrected τ

ap
m (τap−ps

m ) can be ob-



303

Figure 4. RT2 (= R600
2 /R400

2 ) vs. τi at τ0
m = 6 ns (A), 10 ns (B), 12 ns (C) and 14 ns (D). The full equations are used, i.e., Equation 2 for R2

and Equation 5 for the spectral density function. One contribution model is assumed for internal motion. In each panel three sets of four RT2
values are shown as drawn lines, corresponding to Rex = 0 s−1 (lowest), 2 s−1 (middle), and 12 s−1 (high). Within each set, four RT2 values
corresponding to S2 values of 1, 0.8, 0.6 and 0.4 are shown. CSA is −170 ppm in all cases, except in panel B, where also are shown the RT2
values for CSA = −150 ppm (broken lines) and −190 ppm (broken dotted lines) with Rex = 0.

tained (Figure 5B, Table 2). In the ns-im region τ
ap−ps
m

can lie substantially below the true rotation correlation
time, τ0

m. Note also that requiring NOE > 0.6, as done
in the usual analysis to remove residues with slow in-
ternal motion, does not guarantee a correct estimation
of τ0

m.
Figure 5C shows a three-dimensional plot of

τ
ap−ps
m vs. Rτmappn and NOE. To first order, the

S2-contours lie in a plane parallel to the NOE axis.
Thus, τ

ap−ps
m is independent of the NOE and lin-

early dependent on Rτmappn, i.e., τ
ap−ps
m ≈ τ0

m −

α(Rτmappn − 1), where α is the slope of the plane.
Consequently, this equation can be used to correct
τ
ap−ps
m for internal motions slower than 200 ps (ns-

im). The correction only depends on Rτmappn. This
yields τ

ap−ps−ns
m , which in fact corresponds to τ0

m. In
other words, τ0

m can be estimated independent of the
time scale or complexity of internal motion.

In practice this correction turns out to be rather
rough (± 1 ns) and dependencies are not exactly lin-
ear. We have determined optimal recursive correction
equations (Table 2). The iterative procedure developed
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Figure 5. The τ
ap
m (A) and τ

ap−ps
m (B) as a function of the NOE, and τ

ap−ps
m as a function of both Rτmappn and NOE (C). The parameter

settings are as in Figure 2, τ0
m = 10 ns, and Rex = 0.

to derive τ0
m is written in MATLAB and proceeds as

described in the flowchart (Figure 1).

IVc. Numerical tests and error considerations
To test how well the iterative determination of τ0

m and
Rex works under different situations, we have car-
ried out extensive tests on a variety of simulated data.
The most important results are illustrated in Figure 6.
The correction on τ

ap
m is excellent, i.e., τ

ap−ps−ns
m ≈

τ0
m ± 0.5 ns over a wide range of S2(1 < S2 <≈ 0.4)

and τi values (0 < τi <≈ 2.0 ns) (Figures 6A–D).

For larger τi values up to 3 ns, the estimation remains
correct but requires S2 values progressively closer to
1. The range of τ0

m values for which the approach
works well is from ca. 6 ns up to 16 ns (or higher).
Whether the internal motion consists of one- or two
contributions does not affect the correct determination
of τ0

m (compare Figures 6A and 6B). A wrong value
of CSA by up to ca. ± 30% hardly affects the correct
estimation of τ0

m (Figure 6C), although for smaller S2

values, τ
ap−ps−ns
m become somewhat overcorrected.

As long as S2 � 0.6, the over-correction is insub-



305

Figure 6. Test of correction of τ
ap
m for ps- and ns-im and determination of Rex from RT2. Panels A to C show τ

ap−ps−ns
m (o) and τ

ap
m (+), and

panels E and F show Rex, as a function of residue number, where the residue number represents different conditions. S2 runs from 1.0 in steps
of 0.2 to 0.4 for residues 1 to 5; the same set of S2 values applies for residues 6 to 10 and so on until the last group of residues, 86 to 90. The
τi values are 0.02 ns (residues 1 to 5), 0.15 ns (residues 6 to 10), 0.4 ns (residues 11 to 15), 0.7 ns (residues 16 to 20), 1.0 ns (residues 21 to
25), 1.7 ns (residues 26 to 30). Rex = 0 s−1 for residues 1 to 30, Rex = 2 s−1 for residues 31 to 60, and Rex = 12 s−1 for residue 61 to 90. To
calculate the synthetic relaxation data (R1, R2, and NOE) at 600 MHz and 400 MHz, a one-contribution internal motion model was assumed,
except in B (see below). The full equations were used (Equations 1–3 and 5). In all cases the CSA is assumed to be −170 ppm, except in C and
F (see below). The τ0

m is 10 ns. (A) τ
ap−ps−ns
m with error bars derived from the experimental errors σ on R1 of 1% and R2 of 2%; the error bars

on τ
ap−ps−ns
m (and Rex see E below) are obtained by rerunning protocol with different combinations of R1 ± σ and R2 ± σ. (B) τ

ap−ps−ns
m

derived when internal is described by a two contribution model; the additional ‘slow’ internal motion has τis = 2.5 ns and S2 = 0.8. The error
bars have been omitted for clarity. (C) τ

ap−ps−ns
m is calculated assuming CSA = −170 ppm, while the test data set was generated with CSA

= −200 ppm. (D) τ
ap−ps−ns
m obtained using an average R2. The reduced experimental error, which is now only based on R1, can be seen on

the smaller error bars. Note the closeness to the actual value of 10 ns. (E) Rex estimated with error bars resulting from experimental errors of
1% on R1 and 2% on R2, and calculated as described under A. (F) Rex estimated using the wrong CSA value; conditions identical to those
described under C.
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stantial, τ
ap−ps−ns
m � τ0

m + 0.5 ns. An important
observation with regard to the data in Figures 6A–C,
is also that the presence or absence of a Rex term has
no effect on the value of τ

ap−ps−ns
m .

As shown in Figure 6E, Rex itself is determined
very accurately, i.e., within ca. ± 0.2 s−1 of its real
value when the correct CSA is used. The effect of a
potential variation of the CSA on the Rex estimate is
illustrated in Figure 6F, where Rex is estimated using
a CSA value of -180 ppm, while the actual value is
−200 ppm. This leads to an overestimation of Rex by
ca. 0.9 s−1 on average (using a value of −170 ppm for
the CSA instead of −180 ppm leads to an overestim-
ation of Rex by ca. 1.2 s−1 on average). The variation
in the CSA is thus absorbed into Rex.

The errors discussed so far are systematic and due
to the approximations during the derivation of the
analytical correction factors for τ

ap−ps−ns
m and in the

estimation of Rex. Another matter is how the experi-
mental error on the relaxation data affects the estimate
of τ0

m and Rex (Figures 6A and 6D). To estimate the
error on τ

ap−ps−ns
m and Rex the following approach

was implemented. The τ
ap−ps−ns
m and Rex calculation

protocol (Figure 1, Section 2) is executed for three
combinations of R1 ±σ and R2 ±σ (and optionally the
NOE) at the two fields, chosen so that the maximum,
middle and minimum values of τ

ap−ps−ns
m and Rex,

consistent with the error R1 and R2, are obtained. The
final τ

ap−ps−ns
m and Rex are the average of these val-

ues and their rmsd is taken as the error. This approach
can simply be turned into a true Monte Carlo estim-
ation by execution of the protocol for a large number
R1 and R2 values within their error range.

The experimental error on τ
ap−ps−ns
m turns out to

be about ± 0.8 ns for good quality data (1% in T1
and 2% in T2). The error on Rex is directly related
to the error in T2 as it is derived from RT2 and is about
± 0.7 s−1, ± 0.9 s−1 and ± 1.4 s−1 for Rex = 0, 2
and 12 s−1, respectively. In conclusion, the system-
atic errors are clearly smaller than these experimental
errors.

A few final comments should be made. The exper-
imental error on R2 is in practice larger than in R1,
often by as much as a factor of two (see e.g., Farrow
et al., 1994; Fischer et al., 1998; Loria et al., 1999;
Korzhnev et al., 2001). It may therefore be more ad-
vantageous to use the average R2, 〈R2〉, instead of R2
itself, for calculating Rτmappn

excor, which is needed to
calculate τ

ap−ps−ns
m . Using an average R2 effectively

removes the experimental error on R2 as a source for

experimental error in Rτmappn and thus in τ
ap−ps−ns
m .

Due to the fact that R2 does not depend much on the
time scale for internal motion, such an approach may
not be detrimental to the accuracy. Both aspects are
borne out by the numerical tests (Figure 6D). For the
whole range of the test data (0.4 � S2 � 1, 0.02 ns
� τi � 1.7 ns), τ

ap−ps−ns
m ranges between 9.2 ns

and 11.8 ns (rmsd of 0.8 ns). When S2 � 0.6 and
τi up to 1.7 ns, τ

ap−ps−ns
m remains within ca. ± 0.5 ns

from the actual value of 10 ns (range between 9.5 ns
and 10.7 ns, rmsd 0.27 ns). The experimental error
on τ

ap−ps−ns
m , which is based on the 1% error in R1,

is indeed considerably reduced and even smaller or
equal to the systematic error (± 0.3 ns, error bars in
Figure 6D) when 〈R2〉 is used.

It is of interest to consider how PINATA performs
with respect to the determination of τ0

m in non-ideal
situations. The τ

ap−ps−ns
m estimate progressively de-

teriorates further away from the ideal situation, τ0
m <

5 ns and S2 < 0.4. However, even when τ0
m < 5 ns,

PINATA still performs essentially correct as long as
τi is well within the ps-im regime and S2 > 0.4
(i.e. NOE >0.2), because ps-im and ns-im corrections
are insignificant. For larger τi values the parameters
for ps-im and ns-im correction need to be adjusted,
which can be done via test calculations. When τ0

m >

5 ns and τi > 3 ns the ns-im correction of τ
ap
m becomes

incorrect for smaller S2 (e.g., < 0.7) and PINATA
takes τ

ap
m as the best estimate of τ0

m.
The effect on the τ

ap−ps−ns
m and Rex values of an

error in the NOE can in the protocol simply be taken
into account by including the potential variation in the
NOE in the re-execution of the protocol (see above
and Figure 1, step 2). However, the error in the NOE
is negligible as follows from the following considera-
tions. Let us assume a potential error in the NOE of ±
0.1. This leads to an error in τ

ap−ps−ns
m of ca 1% (=

0.117/τap−ps−ns
m ; see Table 2) due to the ps-im cor-

rection; the ns-im correction depends only to second
order on the NOE (Table 2) and does not contribute
via the NOE to the error.

The τ
ap−ps−ns
m values represent τ0

m. In the case of
anisotropic tumbling, the residue-specific τ0

m contains
global structural information (Equation 9). In the usual
methodology to analyze 15N relaxation data, residues
with NOE > 0.6 and residues with T1 and T2 values
close to their average are selected to extract this in-
formation (Tjandra et al., 1996). Subsequently, the
diffusion tensor is estimated from the τ

ap
m of the se-

lected residues (Tjandra et al., 1996). The reduced
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number of residues may prevent a correct estimate of
the diffusion tensor (Renner and Holak, 2000). With
the protocol presented here no residue selection needs
to be done. Consequently, a more reliable estimate of
the diffusion tensor is obtained. In addition, more ori-
entations N-H relaxation vectors are available for more
‘global’ structural information. Error considerations
show that even for modest degrees of anisotropy the
helix orientations can be well determined from good
quality relaxation data.

V. Final order parameters and time scales via grid
search fitting (Step 4, Figure 1)

After Rex and τ0
m have been determined independ-

ent of the model for internal motion, and the internal
motional model has been qualitatively assessed via
analysis of Rτmappn and RT1n vs. NOE graphs, the
final order parameters and time constants for internal
motion are determined via grid search fitting. The
following target function has been used:

χ2
υ = 1

ν




(
R

hf _ exp
2 − R

hf _calc
2

)2

σ2
Rhf

2

+
(
R

hf _ exp
1 − R

hf _calc
1

)2

σ2
Rhf

1

+
(
RT 1exp − RT 1calc

)2

σ2
RT1

+
(
NOEhf _ exp − NOEhf _calc)2

σ2
NOEhf

}
. (12)

Here, ν = N − p is the number of degrees of freedom
left after fitting N data points with the fitting function
that has p adjustable parameters (Bevington, 1969).
The σ’s are the experimental error estimates. The sub-
script ‘hf’ stands for high-field and identifies that Rhf

2 ,
Rhf

1 , etc., are measured or calculated at the highest
field. We use the above target function based on the
idea that Rex is already determined from RT2 ratios,
so that only Rhf

2 is still a free parameter (exchange cor-
rected R2 at highest field), while Rlf

1 (lf = low field) is
incorporated in to RT1. The fitting routines, which are
written in MATLAB, employ grid search to ensure that
no minima are missed. No restrictions are put on the
relaxation equations and in principle every parameter
can be optimized. First a rough grid is used to scan the
target error function using parameter estimates from

the earlier steps as starting values. Then a finer grid is
applied. Internal motion models with either one (M1;
τi and S2 fitting parameters) or two contributions (M2;
τif , S2

f , τis and S2
s fitting parameters) are tested. The

S2
s can either be kept fixed at a uniform value or op-

timized together with τif and S2
f . To keep the number

of adjustable parameters as small as possible, τis is
kept fixed at a uniform value during a fitting run. How-
ever, it can be optimized via different fitting runs. The
optimization can be carried out with either a residue-
specific τ0

m or an average τ0
m. The quality of the fit of

a given model is statistically assessed via the standard
χ2

υ statistics (Bevington, 1969).
Alternatively, one can use the Modelfree (Man-

del et al., 1995) or DASHA (Orekhov et al., 1996)
programs to optimize the parameters using the model
selection based on Rτmapn

excor or RT1n.

VI. Demonstration of protocol on experimental data

The protocol has also been applied to the published
experimental 15N-relaxation data of the M13 coat pro-
tein (gVIIIp) complexed with SDS micelles, which
has been measured at 500, 600 and 750 MHz (Papa-
voine et al., 1997, 1998). The 45 residue long gVIIIp
contains two helices. One helix is inserted into the
SDS micelle, whereas the other is bound to the mi-
celle surface. The two helices show distinctly different
relaxation behavior and thus are expected to have dif-
ferent degrees of ps-im and ns-im for the residues
in the two helices. Therefore, this set of relaxation
data promises to be suitable for demonstrating our
protocol. First, for determining the presence or ab-
sence of ps-im and/or ns-im via our protocol, which
functions even if all residues in the protein would be
involved in ns-im. Secondly, for determining the real
residue-specific τ0

m independent of the time scale of
internal motion. The latter provide global structural
information in case of anisotropic tumbling. The NMR
structure of gVIIIp was derived from short-range clas-
sical NMR data (NOEs and J-couplings). Generally,
it is difficult to derive global structural features from
classical NMR data. However, in this case the clas-
sical NMR data sufficed to reasonably well define the
relative orientation of the two helices, i.e., to define
global structural features. In other words, the global
structural information we derive via our protocol from
the relaxation data becomes testable. The analysis is
based on the R1, R2 and NOE data collected at 500
and 750 MHz.
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VIa. Analysis of internal motion via RT1n and
Rτmappn versus NOE plots
The exchange-corrected (Rτmappn

excor) and the RT1n
values vs. NOE are displayed in Figures 7A and 7B,
respectively. The Rτmappn values are the ratio of the
residue-specific apparent overall tumbling times de-
rived from R1 over R2 ratio at the two magnetic fields,
while RT1n are the R1 ratio’s at the two magnetic
fields (exact definition in Section III). Rτmappn, RT1n,
and NOE follow directly from the measured experi-
mental data and do not depend on a motional model.
Both plots in Figure 7 show essentially the same fea-
tures except that the RT1n vary over a larger range
(between ca. 1 to 0.8). In addition, RT1n values are
not affected by possible conformational exchange and
have smaller errors than the Rτmappn

excor values (ca.
1 to 0.89). As can be seen some residues have RT1n
values around 1, while others have RT1n values con-
siderably smaller than 1. The residues with RT1n (or
Rτmappn

excor) around 1 are only affected by ps-im,
while those with RT1n (or Rτmappn

excor) < 0.97 ex-
perience ns-im or a mixture of ns- and ps-im (see
Section III). Note that this conclusion holds true, ir-
respective of the fact whether the overall tumbling is
isotropic or anisotropic, and independent of the value
of the NOE, independent of the value of the exact
value CSA and the exact value of the overall tumbling
time(s) (see Section III).

To investigate whether the Rτmappn and RT1n val-
ues correlate with expected rigidity, we have in Fig-
ures 7C and 7D separated the residues according to
their structural environment. The residues in the helix
which is inserted into the micelle, generally have
RT1n = 1 ± 0.05 (Figure 7D). Thus, they experience
only ps-im and a description with one contribution of
internal motion is exact. This is expected for a well-
formed helix in a rigid core. In contrast, the residues in
the helix on the SDS surface cluster around 〈RT1n〉 ≈
0.87, showing the presence of ns-im (Section IIIc).
A description with either one or two contributions of
internal motion is then required. If a one-contribution
model holds, the time scale and order parameter of the
internal motion can be directly read off from the RT1n
vs NOE graph (Figure 7D). A 〈RT1n〉 of ca. 0.87 and
a 〈NOE〉 of ca 0.58 correspond to τi of ca 1 ns with
S2 of ca. 0.67. The error margins on τi and S2 follow
directly from Figure 7D and the experimental error in
RT1n (ca. 2%) and NOE (ca 0.05). In the case of a
two-contribution model the data can be interpreted as
different combinations of ps- and ns-im (see section
IIIc). For example, the internal motion can consist of a

ns-im with τis = 1.5 ns, so that its contribution (S2
s ) is

ca. 0.75, together with a ps-im with varying but small
values for its S2

f (ca. 0.8) (Figure 7D, dotted lines).
Whether a one- or a two-contribution model describes
the data best, can be established from a simple com-
parison of the experimental and predicted R1-values
(see also Section IIIc). The surface helix has exper-
imental R1-values of 1.25 ± 0.02 s−1 (at 750 MHz,
residue 10 to 16). For a one-contribution model with
τis = 1.0 ns and S2 = 0.7 and with τ0

m = 9.5 ns (see
below), the predicted R1 is ca. 1.41 s−1. This value is
too high. Therefore a two-contribution model needs to
be considered. For τis = 1.5 ns and S2

s = 0.75 and
τif = 0.02 ns and S2

f = 0.85 and τ0
m = 9.5 ns, which

fits the RT1n and NOE data in Figure 7D, the predicted
R1 is 1.26 s−1. This R1 value is close to the experi-
mental R1 of 1.25 s−1. Thus, a two-contribution model
indeed is needed to explain the relaxation data for the
surface helix. The surface helix residues undergo both
ps-im as well as ns-im. The ps-im is of an amplitude
and time scale such as usually found in well-defined
helices. The ns-im can probably be ascribed to domain
motion of the complete helix over the micelle surface.

In conclusion, the internal motion of the two
helices as derived from the relaxation data indeed
correlates nicely with the structural environment.

VIb. The real residue-specific overall tumbling times
τ0
m and global structural information

Figure 8A shows the residue-specific τ
ap−ps−ns
m val-

ues for the M13-SDS complex obtained via our ana-
lysis protocol (Section IV). Note that the τ

ap−ps−ns
m

values are corrected for internal motion on either ps- or
ns-time scale. They represent the real residue-specific
overall tumbling times τ0

m. If anisotropic tumbling is
present, these values depend on the N-H vector orient-
ation and thus can provide global structure information
(Sections IVb and IVc).

The τ
ap−ps−ns
m values seen in Figure 8A are not

equal but show variation along the amino acid se-
quence, e.g., for the surface helix they are different
from those for the helix inserted into the micelle. This
shows that the complex tumbles anisotropically. From
the distribution of the τ

ap−ps−ns
m values we estimate

an anisotropy (= τ0
l /τ

0
s ) of 1.5 to 2.0. The former

value is estimated from
〈
τ
ap−ps−ns
m

〉
of the inserted

helix (12.3 ns) and of the surface helix (9.8 ns) via
(τ0

l /τ
0
s ) ≈ 1 + (2 ∗ ((12.3/9.8)− 1)) (Equation 9) and

the latter from the maximum and minimum values of
τ
ap−ps−ns
m of 12.8 ns and 8.2 ns, respectively.
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Figure 7. Rτmappn (A, C) and RT1n (B, D) vs. NOE plots of 15N-relaxation data from the M13 gVIII coat protein (gVIIIp) in complex with
SDS micelles at 750 and 500 MHz (Papavoine et al., 1997, 1998). In panels A and B all residues are shown. In panels C and D only the residues
are shown, which are part of the helix on the surface of the SDS micelle (10–16; circles) or part of the helix that is inserted in to the micelle
(30–43; squares). Two residues are labeled with its corresponding residue number. The normalization constant RT10 used in the experimental

RT1n is calculated assuming CSA = −170 ppm and t0m equal to
〈
τ
ap−ps−ns
m

〉
(see text). The error on the data points is based on 1% error in

R1 and 2% error in R2. The areas with vertical drawn lines indicate the regime where only ps-im is present. The theoretical S2-contours at S2

1, 0.8, 0.6 and 0.4, are calculated using the full equations (Equations 1–3 and 5) with t0m =
〈
τ
ap−ps−ns
m

〉
and CSA = −170 ppm in two ways.

(1) A one-contribution model for internal motion is assumed (solid contour lines) with ti running from 20 ps to 6 ns. The dashed line is the
ti -contour at 1 ns. (2) An additional internal motion is assumed to be present with S2

s = 0.8 and tis = 2 ns (dotted contour lines).

Within each helix, the τ
ap−ps−ns
m values in Fig-

ure 8A are effectively the same. This is expected,
because within helices, the N-H vectors are oriented
almost parallel to the helix axis and thus have the same
orientation throughout the whole helix. Comparing the

two helices, the
〈
τ
ap−ps−ns
m

〉
of the helix inserted into

the micelle is ca 12.3 ns, while for the surface helix

ca 9.8 ns. This difference shows that within the com-
plex the two helices have different orientations. The〈
τ
ap−ps−ns
m

〉
of the helix inserted into the micelle is

close to the maximum. Therefore, this helix must be
oriented nearly parallel to the long axis of the diffusion
tensor and thus to the long axis of the complex. In

contrast, the
〈
τ
ap−ps−ns
m

〉
of the residues in the surface
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Figure 8. Overview of fitting results for M13 coat protein gVIIIp
in complex with the SDS micelles. (A) τ

ap
m (+) and τ

ap−ps−ns
m (o

with error bars) versus residue number. The errors on τ
ap−ps−ns
m

are obtained from the errors in R1 (1%) and R2 (2%) at the two

fields by recalculation of τ
ap−ps−ns
m for combinations of R

hf/lf
1 ,

R
hf/lf
1 ± σ, R

hf/lf
2 , and R

hf/lf
2 ± σ, so that its upper and lower

bound values are found (hf and lf indicate high and low field,
respectively, and σ the experimental error). (B) Final S2 of the
one-contribution (+) and two-contribution models (o). The S2

s of the
two-contribution model is 0.8 and tis is 1.5 ns. (C) The χ2 for the
one- (dashed line) and two-contribution models (drawn line) with
S2
s = 0.8 and τis = 1.5 ns.

helix is close to the smallest value. This helix must
therefore be close to but not exactly perpendicular to
the long axis of the complex (ca. 60◦, Equation 9).

In conclusion, real residue-specific overall tum-
bling times were determined, i.e. they are not affected
by ps- and/or ns-im, and global structure information
has been derived from their residue-specific variation.
Note that Papavoine et al. employed the usual analysis
to derive overall tumbling times from R1 over R2 ra-
tio’s, i.e., no correction for ns-im could be made. They
therefore had to assume that the residues in the surface
helix experience the same tumbling time as those in

the inserted helix (ca. 11.3 ns). Consequently, they
could not derive global structural information from
the relaxation data. It is interesting to compare our
global structural information with the NMR structure
(Papavoine et al., 1998). This structure was determ-
ined from classical short-range NMR constraints, such
as NOEs and J-couplings. Generally, it is difficult
to derive global structural features from such data.
However, in this case the data sufficed to reasonably
well define the relative orientation of the two helices,
i.e., to define global structural features. The set of
NMR structures shows that the two helices are ap-
proximately perpendicular. Thus, our analysis of the
relaxation data confirms this ‘global’ structural feature
of the gVIIIp in the complex.

Recently we have derived the global structure of
the apoCII-SDS complex (Zdunek et al., 2003). Apo-
CII consists of three helices attached to the surface
of the SDS micelle. The classical NMR data did not
define the relative orientation of these helices. Our
analysis of relaxation data measured at two fields
showed that all residues were affected by ns-im. The
real residue-specific overall tumbling times provided
‘global’ structural information, which together with
the other restraints was sufficient to define the ‘global’
structure of the complete apoCII-SDS complex.

VIc. Final internal motion parameters by fitting via
grid search
Given the qualitative model assessment, including de-
tection of the presence of ns-im (Section VIa) and the
internal motion corrected residue-specific overall tum-
bling times (Section VIb), the final internal motion
parameters are obtained by fitting via the grid search
method (see Section V). The residues of the helix in-
serted into the SDS micelle are indeed fitted best with
a one-contribution model with ps-im and S2 of around
0.9 (Figures 8B and 8C). In contrast, for the surface
helix the χ2-residuals are only acceptable when a two-
contribution model with a mixture of ps- and ns-im is
invoked (Figure 8C). The S2(= S2

s S2
f ) values of the

residues in the surface helix are ca. 0.6 (Figure 8B).
It is interesting to compare these final internal mo-

tion parameters with those of Papavoine et al. (1997).
They derived the overall tumbling times via the usual
method, i.e., from R1 over R2 ratio’s but without
correction for ps- and/or ns-im, and had to assume
that the residues in the surface helix experienced the
same tumbling time as those in the inserted helix (ca.
11.3 ns). As described in Section VIb, we find that the
real overall tumbling time of residues in the surface
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helix is ca. 9.8 ns, after correction for ns-im, while
those in the inserted helix have on average 12.3 ns
(Figure 8A). Smaller tumbling times tend to increase
the S2. Thus, our average value of S2 for the surface
helix of 0.6 is indeed up from the value of ca. 0.5 found
by Papavoine et al. (1997). The reverse but to lesser
extent holds (11.3 ns versus 12.3 ns) for the residues
of the helix inserted into the micelle.

Their results are similar to ours because they meas-
ured the 15N relaxation at multiple fields, and most im-
portantly ca half of the residues in the gVIIIp undergo
only pure ps-im of small amplitude. Consequently, for
these residues the overall tumbling time is correctly
estimated via the usual method. The underestimation
of the overall tumbling time due to the residues in the
surface helix, which experience ns-im, is thus com-
pensated by the correct value of the residues in the
helix inserted into the micelle. Is there a worse case
scenario? They occur for proteins with domain mo-
tions or for partially folded proteins. An example is
the apoCII-SDS complex (Zdunek et al., 2003), where
all apoCII residues experience a significant degree of
ns-im. Applying the usual method for estimating the
overall tumbling time (no ps-im and ns-im correction)
would here underestimate the overall tumbling time
considerably (ca. 12 ns versus 9 ns for the first two
helices). This underestimation leads to an overestima-
tion of the real S2 (which is 0.66) by a factor of 1.33
(estimated from the equation for R2). Furthermore,
Korhznev et al. (1997) have shown that analyzing re-
laxation data at only one field with an underestimated
tumbling time obscures the presence of ns-im. That is,
a perfectly correct fit is obtained for a one-contribution
ps-im model even when both ps- and ns-im are present.
Fitting the relaxation at two fields simultaneously, but
with an underestimated overall tumbling time, still
underestimates the contribution of ns-im and thus ob-
scures the presence of ns-im at least partly. In our
protocol, we focus on the field dependence of the re-
laxation data (via the RT1n versus NOE plots and in
the fitting target function, Equation 12) and employ
the correct overall tumbling time, which circumvent
these potential pitfalls.

Concluding remarks

We successfully tested and demonstrated a new pro-
tocol (PINATA) for analyzing within the context of
the Lipari–Szabo formalism 15N-relaxation data meas-
ured at two fields at least. The two main new features

of the protocol are the following. With this method
the presence or absence of ns-im can unambiguously
be established irrespective whether the overall mo-
tion is isotropic or anisotropic, and independent of
the value of the NOE, even when all residues are af-
fected by ns-im. In addition, the real residue-specific
overall tumbling time, τ0

m, is determined independent
of the time scale and amplitude of internal motion.
These results are obtained by focusing on the field
dependence of the relaxation data. Thus, in contrast
to the usual analysis, no priori assumption about time
scales or amplitude of internal motions needs to be
made. The PINATA protocol takes ca 1 to 1.5 h to
analyze the relaxation data of a 150-residue protein
and has a graphical interface to quickly identify the
internal motion model. The decoupling assumption
in the Lipari–Szabo description of internal motion
which is employed in PINATA is dropped in the theory
developed by Meirovitch and coworkers (Tugarinov
et al., 2001) for isotropically tumbling molecules. This
SRLS theory still converges to the Lipari–Szabo form-
alism in the fast motional limit and of course in the
rigid limit. Because PINATA focuses on detection of
deviations from ps-im and rigid limit behavior de-
tecting the absence or presence of ns-im via PINATA
does not depend on the assumption of absence or pres-
ence of coupling between internal and global motion.
The PINATA protocol therefore opens the way for
the quantitative analysis of the dynamics of proteins,
which undergo domain motions or are unfolded or par-
tially folded. The PINATA protocol is implemented in
MATLAB scripts, which are available on request.
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